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Abstract

Introduction: This study sought to discover and replicate plasma proteomic

biomarkers relating to Alzheimer’s disease (AD) including both the “ATN” (amy-

loid/tau/neurodegeneration) diagnostic framework and clinical diagnosis.

Methods: Plasma proteins from 972 subjects (372 controls, 409mild cognitive impair-

ment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays,

including 4001 and 25 proteins, respectively.

Results: Protein co-expression network analysis of SOMAscan data revealed the rela-

tion between proteins and “N” varied across different neurodegeneration markers,

indicating that the ATN variants are not interchangeable. Using hub proteins, age, and

apolipoprotein E ε4 genotype discriminated AD from controls with an area under the

curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74.

Targeted assays replicated the relation of four proteins with the ATN framework and

clinical diagnosis.

Discussion: Our study suggests that blood proteins can predict the presence of AD

pathology asmeasured in the ATN framework as well as clinical diagnosis.

KEYWORDS

Alzheimer’s disease, ATN framework, biomarker, dementia, network analysis, plasma proteomics,
replication
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1 INTRODUCTION

Alzheimer’s disease (AD) is characterized by the presence of amy-

loid beta (Aβ) containing plaques and neurofibrillary tangles com-

posed of modified tau protein together with the progressive loss of

synapses and neurons.1 Currently, the best characterized methods for

measuring amyloid or tau pathology are positron emission tomogra-

phy (PET) imaging and cerebrospinal fluid (CSF) measurement.2,3 The

National Institute onAging andAlzheimer’s Association (NIA-AA) have

proposed a biomarker-based framework for classifying AD based on

biomarkers of amyloid pathology (A), tau pathology (T), and neurode-

generation (N).4 Briefly, “A” is measured by cortical amyloid PET lig-

and binding or CSF Aβ42; “T” is measured by CSF phosphorylated tau

(p-tau) or cortical tau PET ligand binding; and “N” is by CSF total tau

(t-tau), 18F-fluorodeoxyglucose (FDG) PET, or brain atrophy on mag-

netic resonance imaging (MRI). CSF neurofilament light chain (NfL) and

neurogranin (Ng) may also be potential “N” markers.5,6

However, many of these measures are challenging because of

their invasiveness, high cost, and limited availability.7,8 Blood-based

biomarkers show promise as a less invasive and potentially cost-

effective option for the detection, classification, and monitoring of

AD pathology. We have been seeking to develop multiplexed assays

suitable for large-scale research screening using two approaches. In

the first, we have used a range of mass-spectrometry proteomic

approaches to generate a panel of “targeted proteins” to be used on

multiplexed platforms; in the second we have used a proprietary near-

proteomic wide aptamer capture array (SOMAscan).9–13 Recently, we

applied these approaches independently to the EMIF-AD Multimodal

Biomarker Discovery study (EMIF-AD MBD), specifically in relation

to the detection of amyloid.14,15 Here, we develop this approach fur-

ther, now combining both targeted and untargeted proteomics and

using protein co-expression analysis and differential expression anal-

ysis to investigate changes in networks of proteins as well as individual

proteins relating to the ATN framework (Figure 1).We have two objec-

tives: first, to compare plasma protein profiles in a variety of ATN vari-

ants (using different “N” biomarkers) and second to test the replication

of bloodbiomarkers relating to theATN framework aswell as to clinical

phenotypes.

2 METHODS

2.1 Participants: EMIF-AD MBD study

The EMIF-ADMBD study is part of the EuropeanMedical Information

Framework for AD (EMIF; http://www.emif.eu/emif-ad-2/); a public–

private partnership funded through the Innovative Medicines Initia-

tive (IMI). The design of the EMIF-AD MBD study has been described

previously16 but in brief, ≈1200 samples from three groups of people

(cognitively normal controls [CTL], mild cognitive impairment [MCI],

and AD)were chosen from pre-existing cohorts with the goal of includ-

ing samples from people with pathology as well as those without. All

participating centers have agreed to share data as part of the EMIF-AD

RESEARCH INCONTEXT

1. Systematic review: Plasma proteins are studied as

candidate biomarkers to predict the “ATN” (amy-

loid/tau/neurodegeneration) diagnostic framework,

while most such studies include small samples. Fur-

thermore, few studies compare the difference between

different ATN variants from the perspective of plasma

proteins.

2. Interpretation: Our findings offer new insights into

changes in individual proteins and protein networks

linked to various AD pathology markers as well as the

ATN framework, particularly in preclinical stages of AD.

Our results also indicate that ATN variants are not inter-

changeable because the relation between proteins and

“N” vary across different neurodegeneration markers.

Our study is the largest plasma proteomic study of var-

ious AD pathology markers, particularly the ATN frame-

work, to our knowledge.

3. Future directions: This work suggests that blood pro-

teins can predict the presence of Alzheimer’s disease

(AD) pathology as measured in the ATN framework.

Those nominated proteins are tractable targets for fur-

ther mechanistic studies of AD pathology.

MBD study. Plasma was available on 972 subjects comprising 372

CTL, 409 MCI, and 191 AD. Samples were collected from the con-

stituent cohorts in EMIF-AD using a range of protocols. General

clinical and demographic information were available for all subjects

(including apolipoprotein E [APOE] ε4 genotype data). In addition, each
subject had a measure of brain amyloid load, using either CSF Aβ or

amyloid PET. Furthermore, CSF t-tau and p-tau analysis data were

available for more than 90% of the subjects. The classification of

the status (abnormal/normal) of amyloid, t-tau, and p-tau has been

described previously.16

In addition, the following AD-related phenotypes were also mea-

sured for the majority of the subjects (Table 1): (1) CSF NfL, Ng, and

YKL-40; (2) MRI measures of hippocampal volume, cortical thickness,

and white matter hyperintensities (WMH); (3) clinical assessments

including baseline diagnosis, baseline Mini-Mental State Examination

(MMSE) score, andMCI conversion.16 The status (abnormal/normal) of

NfL and hippocampal volume were determined by the median value of

eachmarker within the whole data set.

We defined the ATN status for each participant using the above

measurements. Briefly, we usedCSF (orwhere not available, PET) amy-

loid as “A” and CSF p-tau181 as “T.” For “N,” we used CSF t-tau, NfL,

and hippocampal volume as biomarkers of N. We then dichotomized

these biomarkers as normal or abnormal and categorized them into

four groups: no pathology (A–T–N–, referring as “A–TN–”), amyloid

positive but both T and N negative (A+T–N–, referring as “A+TN–”),

amyloid positive and T/N positive (including A+T–N+, A+T+N–, and

http://www.emif.eu/emif-ad-2/


SHI ET AL. 1455

F IGURE 1 Flowchart of study design. A,Measurement and quantification of 4001 proteins using SOMAscan assay; (B)Measurement and
quantification of 25 proteins using enzyme-linked immunosorbent assay and Luminex. Twenty proteins overlapped between approach (A) and (B)

TABLE 1 Demographics of EMIF participants included in the analysis by diagnosis. Percentage of cases is shown in brackets for male sex, APOE
ε4 carriers and the abnormality of amyloid, p-tau, and t-tau

Characteristics Sample size CTL MCI AD P

N 972 372 409 191 NA

Agemean (SD), y 972 64.6 (8.0) 69.9 (8.0) 70.5 (8.8) <.001

Male sex N (%) 972 209 (56) 216 (53) 103 (54) .64

APOE ε4+N (%) 972 139 (37) 195 (48) 116 (61) <.001

MMSE (SD) 967 28.8 (1.2) 26.2 (2.6) 21.4 (4.7) <.001

Educationmean (SD), y 972 12.8 (3.7) 11.0 (3.7) 10.3 (3.9) <.001

Amyloid+N (%) 972 112 (30) 254 (62) 168 (88) <.001

P-tau+N (%) 876 53 (19) 215 (53) 128 (67) <.001

T-tau+N (%) 880 54 (19) 235 (58) 152 (80) <.001

CSFNfL (SD) (pg/mL) 643 742.1 (486.6) 1231.9 (2309.0) 1777.6 (2843.1) <.001

CSFNg (SD) (pg/mL) 598 125.8 (203.9) 151.3 (199.1) 149.4 (125.3) .33

CSF YKL-40 (SD) (ng/mL) 649 141.9 (57.0) 176.9 (62.1) 191.4 (69.6) <.001

Hippocampal volume (SD) in mm3 633 7628.6 (883.7) 6780.2 (1233.9) 6220.2 (940.1) <.001

Cortical thickness (SD) in mm 586 2.3 (0.1) 2.3 (0.1) 2.3 (0.1) .36

WMH (SD) in mL 617 0.9 (0.7) 1.1 (0.8) 1.0 (0.9) .02

Abbreviations:+, abnormality; AD, Alzheimer’s disease; APOE, apolipoprotein E; CSF, cerebrospinal fluid; CTL, cognitively normal controls; MCI, mild cogni-

tive impairment;MMSE,Mini-Mental State Examination; NfL, neurofilament light chain; Ng, neurogranin; p-tau, phosphorylated tau; SD, standard deviation;

t-tau, total tau;WMH, whitematter hyperintensities.

A+T+N+, referring as “A+TN+”), and suspected non-Alzheimer’s

pathology (SNAP, including A–T–N+, A–T+N–, and A–T+N+).

2.2 Plasma analyses

We used two approaches to measure proteins in plasma samples col-

lected from pre-existing cohorts as part of EMIF-AD MBD. First, we

used the SOMAscan assay platform (SomaLogic Inc.) to measure pro-

teins in plasma. SOMAscan is an aptamer-based assay allowing for the

simultaneous measurement and quantification of, in the version used

here, 4001 proteins. The assay uses chemically modified nucleotides

to transform a protein signal into a nucleotide signal that can be

quantified using relative fluorescence on microarrays.17 The abun-

dance of each protein was log-transformed for all subsequent analy-

ses. Second, we used enzyme-linked immunosorbent assay (ELISA) and

Luminex xMAP assays to measure 25 proteins in the same subjects, as

described previously.15 Overall, 20 proteins overlapped between the
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SOMAScan array and the second approach (ELISA and Luminex xMAP;

Figure 1).

2.3 Statistical analysis

All statistical analyses were completed using R (version 3.3.2).

To compare baseline cohort characteristics across three different

diagnostic groups (CTL, MCI, and AD), we used one-way analysis of

variance (ANOVA) and chi-square tests to compare continuous and

binary variables, respectively.

2.3.1 Weighted gene correlation network analysis
(WGCNA)

The R package WGCNA18 was used to construct a co-expression net-

work from the proteins obtained from the SOMAScan assay. This clus-

tering is based on calculating correlations between paired variables,

soft-threshold transforming them with a power function (i.e., corβ),

and using the result as an adjacency matrix between variables. The

final step applies hierarchical clustering to this adjacency matrix. We

applied this algorithm with default parameters, except for the follow-

ing settings: soft threshold power beta= 4, minimummodule size= 10

proteins, merge cut height= 0.2. The resulting nine modules or groups

of co-expressed proteins were used to calculatemodule eigenproteins.

The eigenprotein-based connectivity (kME) was used to represent the

strength of a protein’s correlationwith other proteinmodulemembers.

Proteins with high intramodular kME in the top 90th percentile within

amodule were considered hub proteins.

The correlation between eigenproteins andADphenotypeswas cal-

culated, the P values were corrected with false discovery rate (FDR),

and corrected P values were presented in a heat map. Furthermore,

we used Student’s t-test to assess pairwise difference of eigenproteins

among different ATN framework and AD diagnostic groups as well as

between MCI participants who subsequently converted to dementia

(MCIc) within 3 years relative to those whose MCI remained stable

(MCIs).

2.3.2 Protein differential expression analysis

To compare the association of proteins with the ATN framework, we

used logistic regression to compare proteins in different ATN profiles

to “no pathology controls” (A–TN–), adjusting for age and APOE ε4
genotype. P valueswere corrected using FDR and presented in volcano

plots. To compare the replication of overlapping proteins in different

ATN framework and AD diagnostic groups, we used Student’s t-test to

assess pairwise difference and presented P values in the box plots.

2.3.3 Pathway enrichment analysis

Differentially expressed (DE) proteins and proteins within differ-

ent modules were further nominated for pathway analysis using

WebGestalt software (http://www.webgestalt.org/). Briefly, DE pro-

teins or proteins within a module were assembled into a “protein list”

and all 4001 proteins measured by the SOMAscan assay were used as

“background.” This enrichment analysis was performed on the Kyoto

Encyclopediat of Genes and Genomes database.

2.3.4 Machine learning

Machine learning was used to identify optimal multivariate signatures,

including both proteins and demographic data (age, sex, and APOE

ε4) as input features, to differentiate AD from CTL, and MCIc from

MCIs. The classifier consisted of a two-stage approach (feature selec-

tion and classifiers) as described previously.14 Briefly, Lasso was used

to select the “n” top input features that best differentiatedADdiagnos-

tic groups. Support vectormachine (SVM) classifierswere then built on

top of these “n” features to predict the outcome under 10-fold cross-

validation. For each analysis, the two steps (feature selection and clas-

sifiers) were performed over 100 iterations, where, in each iteration,

the algorithm was allowed to use one feature more than in the previ-

ous iteration, starting with 1 feature and finishing with 100. Feature

selection resulted in a list of features ranked by their correlation with

AD diagnosis, of which the top “n” was selected for subsequent anal-

ysis. The classifier step was performed using the selected features to

obtain a model to discriminate AD diagnosis. Those features that pro-

duced best performance were reported.

3 RESULTS

3.1 Subject demographics

Demographic information of subjects is shown inTable 1.No significant

difference was observed in the distribution of sex. The CTL group was

younger and had a lower proportion of APOE ε4 carriers compared to

the MCI and AD groups. Furthermore, the CTL participants had more

years of education and higher MMSE scores. In terms of AD pathology

markers, the ratio of abnormality of amyloid, p-tau, and t-tau in AD and

MCI individuals was, as expected, significantly higher than in controls.

Moreover, CSFNfL andYKL-40were also significantly higher inADand

MCI while no difference was observed for CSF Ng across three differ-

ent diagnostic groups. The MCI and AD groups had more hippocampal

atrophy andmoreWMH than the CTL group.

3.2 Plasma protein co-expression network
analysis reveals modules linked to AD pathology
markers

We first performed a network-based analysis of the plasma proteome

as reported by the SOMAScan assay using WGCNA. We found nine

modules (M) of co-expressed proteins and ranked them based on

size from largest (M1; n = 1472 proteins) to smallest (M9; n = 11

proteins; Table S1 in supporting information). Figure 2A shows the

clustering of these modules’ concordance according to similarities in

http://www.webgestalt.org/
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F IGURE 2 Protein modules correlating to Alzheimer’s disease (AD) pathologymarkers. A,Weighted gene correlation network analysis
(WGCNA) of the plasma proteome. This algorithm generated ninemodules (M) of co-expressed proteins. Modules are clustered in the network
dendrogram based on their relatedness. B, Analysis of the association of module with AD pathologymarkers. * and ** denote significant
correlations P< .05 and P< .001 after false discovery rate (FDR) correction respectively.∼ indicates corrected P value tend to be significant, .05<
corrected P value< .1. “A,” amyloid; “T,” tau; “N,” neurodegeneration; “V,” vascular; “I,” inflammation;+, abnormality; P-tau, phosphorylated tau;
T-tau, total tau; NfL, neurofilament light chain; Ng, neurogranin;WMH, white matter hyperintensity

expression patterns. We further investigated the biological signifi-

cance of proteins in each module and found that the modules were

enriched with various pathways after FDR correction (Table S2 in sup-

porting information), such as the metabolic pathways (M1 and M4),

cytokine–cytokine receptor interaction (M2 and M3), PI3K–Akt sig-

naling pathway (M5), transcriptional misregulation in cancer (M6), and

complement and coagulation cascades (M7).

We then assessed the module correlations to the AD pathology

markers (Figure 2B).WeusedAβ as “A”; CSF p-tau levels as a biomarker

of tau (“T”); CSF t-tau, NfL, Ng, and structural atrophy on MRI (hip-

pocampal volume and cortical thickness) as biomarkers of “N”; WMH

volume as a biomarker for vascular disease burden (“V”); and CSF YKL-

40 as a biomarker of inflammation (“I”).

Overall, four modules (M2 blue, M3 brown, M4 yellow, and M8

pink) had positive correlations with both “A” amyloid and “T” p-tau

pathology after FDR correction. For “N,” five modules (M2 blue, M3

brown, M4 yellow, M5 green, and M8 pink) had a positive correla-

tion, while the M9 magenta module had a negative correlation with

CSF t-tau. Of these, three (M2 blue, M4 yellow, and M9 magenta)

were consistent in their direction of change and reached statistical sig-

nificance for hippocampal volume (Figure 2B). Although none of the

modules reached statistical significance with CSF NfL and Ng or cor-

tical thickness, the association between five modules (M2 blue, M3

brown, M5 green, M8 pink, and M9 magenta) and NfL tended to be

significant (corrected P values = .07 for all five modules). The same

tendency was also observed between M3 brown and cortical thick-

ness (corrected P value = .06; Figure 2B). For “V” and “I,” one and

five modules were associated with WMH and YKL-40, respectively

(Figure 2B).

3.3 Correlation of protein networks with the ATN
framework

We first assessed correlations for each module with the ATN frame-

work where “A,” “T,” and “N” were determined by amyloid, CSF

p-tau, and t-tau measurement, respectively. We dichotomized the rel-

evant biomarkers as normal or abnormal and categorized each indi-

vidual into one of four groups: A–T–N– (no pathology, n = 273),

A+TN– (amyloid pathology, n = 115), A+TN+ (AD pathology, n =

383), and A–TN+ (SNAP, n = 89). We then assessed the correlation

of these ATN profiles with each module eigenprotein. We found that

four modules (M2 blue, M3 brown, M4 yellow, and M8 pink) showed

a significant difference across ATN profiles (Figure 3A-D). They could

be divided into two groups: (1) those influenced by amyloid pathol-

ogy (A+); for example, M2 blue and M4 yellow modules showed sig-

nificant difference between A–TN– and A+TN– as well as between

A+TN+ andA–TN+profiles. (2) Those influencedby tau pathology and

neurodegeneration (TN+); for example, M2 blue, M3 brown, and M8

pink showed significant increase in A+TN+ compared to A+TN– pro-

file (Figure 3A-D).We also checked themodule correlations to theATN

framework in CTL only (n = 372). Of the four modules, two (M2 blue

and M4 yellow) had a significant increase in individuals with A+TN+

andA+TN– profiles compared to A–TN– (Figure S1B andC in support-

ing information).

We then used logistic regression to identify differential expressed

proteins between different ATN profiles and A–TN– (using t-tau as

“N”), adjusting for age and APOE ε4 genotype. Comparing amyloid-only

pathology (A+TN–) to no pathology (A–TN–), we found that 154 pro-

teins reached statistical significance (P < .05) but none survived FDR
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F IGURE 3 Protein modules correlate to amyloid/tau/neurodegeneration (ATN) profile. A-D, The correlation of module profiles with the ATN
framework, using t-tau as “N.” E, Volcano plot displaying all proteins differentially expressed between A–TN– and A+TN+ individuals. Proteins
passing FDR (q< 0.05) are noted in the same color as themodule color. F and G, Top 10 hub proteins withinM2 blue andM4 yellowmodule
respectively. SNAP, suspected non-Alzheimer’s pathology;M, module; FDR, false discovery rate

correction (q< 0.05; Figure S2A in supporting information). Equally, no

proteins passed FDR comparing A–TN+ (SNAP) to no pathology (A–

TN–; Figure S2B). However, in contrast, 776 survived FDR comparing

AD pathology (A+TN+) to no pathology (A–TN–). As demonstrated in

the volcano plot of Figure 3E, the majority of DE proteins were in the

M2bluemodule (73.1%), followed byM1 turquoise (11.7%),M4 yellow

(9.9%), and M3 brown (3.9%) modules, indicating consistency across

differential expression analysis and co-expression network analysis.

Pathway enrichment analysis further showed that DE proteins were

enriched in nine pathways such as AD pathway (Table S3 in supporting

information).

In protein co-expression networks, hub proteins are likely impor-

tant proteins because they are highly correlated with other proteins in

the module. We sought to determine whether proteins DE in A+TN+

individuals were also hub proteins in the co-expression networks. We

focused on the two modules (M2 blue and M4 yellow) that showed a

significant difference across ATN profiles in both all samples and CTL

only. These two modules had 142 hub proteins (115 from M2 blue

and 27 from M4 yellow), of which 141 proteins (99.3%) were DE in

A+TN+ individuals, further indicating the consistency between pro-

tein co-expression network analysis and proteome wide differential

analysis. Figure 3F and G showed the top 10 hub proteins within the

M2 blue and M4 yellow module, respectively (Table S4 in supporting

information).

As we had multiple measures that have been used as markers of

neurodegeneration or “N,” we explored the relationship of each with

the protein networks. Of the four modules (M2 blue, M3 brown, M4

yellow, and M8 pink) significantly increased in A+TN+ when t-tau

was used as “N” (Figure 3A-D), three and two remained significant

when NfL and hippocampal volume were used as “N,” respectively
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F IGURE 4 Protein module associations with Alzheimer’s disease (AD) diagnosis (A-D), MCI conversion (E-H), and correlations with cognitive
status (I-L). CTL, control; MCI, mild cognitive impairment; MCIc, MCI convertors; MCIs, stableMCI orMCI non-converted to AD;MMSE,
Mini-Mental State Examination

(Figure S3A-C and Figure S3E and F in supporting information). From

differential expressed proteins analysis (A+TN+ vs. A–TN–), we found

151 and 974 proteins passed FDR when NfL and hippocampal volume

wereusedas “N,” respectively (Figure S4AandB in supporting informa-

tion). One hundred thirty-four proteins were overlapping across three

different “N”markers (Figure S4C), which was significantly higher than

expected by chance alone (P < .001), indicating the similarity of pro-

tein profile across three “N” markers. Pathway enrichment of DE pro-

teins revealed no pathways passed FDR correction when using NfL as

“N.” In contrast, 42 pathwayswere enriched using hippocampal volume

as “N,” among which 9 were overlapping with those obtained using t-

tau as “N” (Table S3). Considering thatmore samples hadCSF t-tau (n=

880)measurement thanNfL (n=643) orMRI (n=633)measurements,

we therefore used CSF t-tau as biomarkers of neurodegeneration (“N”)

for the following analysis.

3.4 Correlation of protein networks with AD
diagnosis, MCI conversion, and MMSE score

We further investigated the module correlations to clinical measures

including AD diagnosis, MCI conversion, and MMSE score. The M2

blue, M3 brown, M4 yellow, and M8 pink modules showed signifi-

cant increase in AD compared to MCI and controls (Figure 4A-D). The

eigenproteins for three modules (M2 blue, M3 brown, M4 yellow) also

increased between MCI converters (MCIc, n = 103) and MCI non-

converters (MCIs, n = 223) (Figure 4E-G). In contrast, M9 magenta

decreased in MCI converters (Figure 4H). Furthermore, all four

modules (M2blue,M3brown,M4yellow, andM8pink)werenegatively

correlatedwith theMMSE score (Figure 4I-L). These results are in con-

cordancewithATNcorrelations as these fourmodules showeda strong

increase in A+TN+ individuals.

3.5 Multiprotein classifier of AD diagnosis and
MCI conversion

Havingdemonstrated the correlationof protein networkswithADclin-

ical groups, we then sought to find a minimal signal from the SOMAS-

can assay data that might serve as a biomarker for clinical AD diag-

nosis. To do this we built machine learning classifiers with 10-fold

cross-validation to identify the optimal multivariate signatures that

differentiated between AD and CTL. We first used demographic vari-

ables (age, sex, and education)withAPOE ε4 genotype as input features
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F IGURE 5 Receiver operating characteristic (ROC) curves of models distinguishing Alzheimer’s disease (AD) from controls in (A) whole group
and (B) APOE ε4 genotype negative group as well as mild cognitive impairment (MCI) conversion in (C) whole group and (D) APOE ε4 genotype
negative group. APOE, apolipprotein E; CTL, control; MCIc, MCI converted to AD;MCIs, stableMCI orMCI non-converted to AD

to predict AD diagnosis and found that a combination of age and APOE

ε4 achieved the highest predictive value with an AUC (area under the

curve) of 0.72with 95%confidence intervals (CI; 0.69, 0.78; Figure 5A).

Then, we added 142 hub proteins of M2 blue and M4 yellow modules

and identified a panel of eight features achieved the highest predictive

value with an AUC of 0.81 (95% CI [0.78, 0.85]; Figure 5A). The input

features automatically selected by the classifier were APOE ε4 geno-

type and seven proteins (Table S5 in supporting information). We fur-

ther performed such comparison in the APOE ε4 negative group and

found that a model containing nine proteins (Table S5) best discrim-

inated AD from controls with an AUC of 0.82 (95% CI [0.80, 0.89]),

which was higher than age alone (AUC = 0.73, 95% CI [0.66, 0.80];

Figure 5B).

Based on the same approach, we developed a model containing

three proteins (Table S5) that best discriminated MCIc from MCIs.

The diagnostic accuracy was higher (AUC = 0.74, 95% CI [0.71, 0.81])

compared to those obtained using age and APOE ε4 genotype alone

(AUC= 0.60, 95%CI [0.56, 0.68]; Figure 5C). Higher accuracy was also

observed in the APOE ε4 negative group using proteins (AUC = 0.73,

95%CI [0.68, 0.85]) compared to age alone (AUC= 0.58, 95%CI [0.51,

0.71]; Figure 5D).

3.6 Replication of several proteins using ELISA
and Luminex xMAP

We also measured 25 proteins in the same cohort using targeted

approaches including individual assay (ELISA) and multiplexed plat-

forms such as Luminex xMAP (Figure 1B).15 Overall, 20 of these pro-

teins overlapped with the SOMAScan array. Of these, eight proteins

were DE in A–TN– relative to A+TN+. Four were both consistent in

direction of change compared to the SOMAScan assay and reached

statistical significance: ficolin 2 (FCN2) (Figure 6A and E), plasmino-

gen activator inhibitor 1 (PAI-1), C-reactive protein (CRP), and vas-

cular cell adhesion protein 1 (sVCAM1; Figure S5A-F in supporting

information). In terms of AD diagnosis, two proteins were differently
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F IGURE 6 Correlation of ficolin-2 (FCN2) with amyloid/tau/neurodegeneration (ATN), Alzheimer’s disease (AD) diagnosis, mild cognitive
impairment (MCI) conversion, andMMSE form SOMAscan (A-D) and targeted approaches (E-H). CTL, control; MCI, mild cognitive impairment;
MCIc, MCI convertors; MCIs, stableMCI orMCI non-converted to AD;MMSE,Mini-Mental State Examination; SNAP, suspected non-Alzheimer’s
pathology;

altered between AD and CTL from both approaches. They were

FCN2 (Figure 6B and F) and PAI-1 (Figure S6A and B in support-

ing information). FCN2 also showed consistent strong increases in

MCIc compared to MCIs from both approaches (Figure 6C and G).

In addition, two proteins showed consistent significant relation with

MMSE. Of these, FCN2 had a negative correlation with MMSE (Fig-

ure 6D and H) and PAI-1 had positive correlations with MMSE

(Figure S6C andD).

4 DISCUSSION

In this study, we measured plasma proteins from 972 subjects (372

CTL, 409 MCI, and 191 AD) using both capture array proteomics

(SOMAscan) and targeted assays (ELISA and Luminex). For SOMAs-

can data, we performed both proteome-wide differential analysis and

protein co-expression network analysis to gain insights into changes in

individual proteins as well as networks of proteins relating to the ATN

framework. We found consistent results through both approaches.

Another notable finding is that the relation between proteins and “N”

varied across different neurodegeneration markers, suggesting that

ATN variants are not interchangeable from the perspective of plasma

protein profiles. When using t-tau as “N,” we found four modules were

related to the ATN framework in all subjects, among which two (M2

blue and M4 yellow) were also related to the ATN framework in the

cognitively normal group. Furthermore, these four modules were also

associated with AD clinical diagnosis and MMSE score. Using hub pro-

teins alongwith age andAPOE ε4 genotype discriminatedAD from con-

trols with an AUC of 0.81 and MCIc from MCIs with an AUC of 0.74.

From targeted protein analysis, we replicated the relations of four pro-

teins with the ATN framework and AD clinical diagnosis.

The increasing recognition that a broad spectrum of pathologies

contribute to AD has highlighted the urgent need for biomarkers that

more comprehensively reflect the complexmechanismsunderlying this

disease.19,20 However, current methods of measuring AD pathology

markers are challenging because of their invasiveness, high cost, and

limited availability. To address this challenge, we applied an integra-

tive proteomics approach to identify plasmamarkers linked to a variety

of AD pathology markers including “A,” “T,” “N,” “V,” and “I.” We found

fourmodules had positive correlationswith both “A” amyloid and “T” p-

tau181 pathology. At the time of conducting the study, CSF p-tau 181

was the optimal assay for estimation of pathological tau in biofluids.

The proteins within these four modules were enriched in various path-

ways that have been reported to be associatedwith AD such as the Ras

signaling pathway,21 MAPK signaling pathwayy22 and JAK-STAT sig-

naling pathway,23 further demonstrating the relatedness of these pro-

teins with AD. Five modules were found to be associated with the “I”

markerYKL-40, amongwhich threemodules (M1 turquoise,M3brown,

andM7 black) were enriched in inflammatory response pathways such

as cytokine–cytokine receptor interaction and complement and coag-

ulation cascades (Table S2).

The discrepancy of the association between modules and different

“N” markers is noteworthy. As shown in Figure 2, six modules were

significantly related to CSF t-tau, while none of them reached statis-

tical significance with CSF NfL or Ng. A distinct difference was also

observed when using t-tau, NfL, and hippocampal volume as “N” for
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the ATN framework from both protein co-expression network analy-

sis and differential analysis. For example, of the four modules associ-

ated with the ATN framework when using t-tau as “N,” only three and

two remain significant when usingNfL and hippocampal volume as “N,”

respectively. From differentially expression analysis, 776 and 974 pro-

teins were DE in A+TN+ when t-tau and hippocampal volume were

used as “N” respectively, while only 151 proteins remained significant

when NfL was used. Our results therefore indicate that ATN variants

are not interchangeable from the perspective of plasma protein pro-

files. This finding is consistent with a recent study showing that dif-

ferent ATN variants are not interchangeable from the perspective of

clinical stage.24 Therefore, although differentmarkers could be used as

“N,” their underlyingmechanismandassociationwith clinical outcomes

are different, suggesting care needs to be taken in using these different

markers when applying the ATN classification framework.

When using t-tau as “N,” we found consistent results through

proteome-wide differential analysis and protein co-expression net-

work analysis related to the ATN framework. For instance, ≈87% of

the differential expressed proteins in A+TN+ individuals were in three

ATN-related modules (M2 blue, M3 brown, and M4 yellow). Further-

more, more than 99%of the hub proteinswithin twomodules (M2 blue

and M4 yellow) were DE proteins in A+TN+ individuals. Of these hub

proteins (Table S4), many have been reported being associated with

AD, such as the apolipoprotein proteins (Apo) B and D,25,26 comple-

ment component C6 and C7,27,28 kallikrein (KLK6 and KLK12),29,30

mitochondrial-related proteins (COX42 and ATP5F1B),31,32 and so on.

As these hub proteins are in M2 blue and M4 yellow modules, which

were related to the ATN framework in individuals with no cognitive

impairment, namely in the pre-clinical stage, it provides implications

that they are tractable targets for further mechanistic studies of AD

pathology, particularly in preclinical stages of AD.

As expected, four ATN framework relatedmodules were also highly

expressed in samples from people with AD and negatively associ-

ated with MMSE score. Using hub proteins within M2 blue and M4

yellow modules, we identified a panel of proteins that can identify

study participants with AD as well as predict MCI conversion. For

those 14 selected proteins (Table S5), we further compared the rela-

tions between these proteins with APOE ε4 genotype and age. Results

showed that all of them were significantly DE between APOE ε4 pos-

itive and negative groups. Eight of them were significantly associated

with age (Table S6 in supporting information). Comparing different

diagnostic groups, we found that themajority of the proteins remained

significantly DE between APOE ε4 positive and negative individuals

within MCI and CTL groups, but not in AD patients (Table S6). This

might be due to the small sample size of AD patients (n = 191). These

signatures, generated from proteins, had considerably more accuracy

than age and APOE ε4 alone, the two biggest risk factors of AD. Fur-

thermore, we found that the predictive value of these protein signa-

tures was retained also in APOE ε4 negative groups. This is impor-

tant because the proportion of APOE ε4 carriers in the general pop-

ulation is low (10% to 20%)33 and therefore relying on APOE ε4 to

enhance recruitment to clinical trials is problematic. The results that

we report here raise the possibility of prescreening in large num-

bers of individuals, regardless of APOE ε4 genotype, as part of trials

recruitment to speed the development of therapeutic interventions

for AD.

From the targeted protein analysis, we replicated the relationships

of four proteins (FCN2, PAI-1, CRP, and sVCAM1) with the ATN frame-

work and with AD clinical diagnosis. Our initial discovery-phase stud-

ies demonstrated that these four proteins have a relationship with

AD and its pathology.34 Furthermore, these four biomarker candi-

dates are also biologically relevant to the disease process. For exam-

ple, FCN2 andmannose-binding lectin (MBL) are both activators of the

lectin complement pathway35 and CSF MBL levels have been shown

to be reduced in AD.36 PAI-1 is involved in Aβ accumulation processes

and knocking out the PAI-1 gene or adding PAI-1 inhibitors dramati-

cally reduces Aβ burden in the brain of APP/PS1 mice.37,38 CRP inhib-

ited Aβ40 in a Ca2+-independent manner and interacted with aggre-

gated Aβ40 on the fibril-forming pathway.39 sVCAM1, cell adhesion

molecules, serve as signal transducers that influence the progression of

neuroinflammation.40 Our replication further demonstrates that these

proteins are involved in AD pathology pathways and could be promis-

ing targets for futuremechanistic studies.

There are three limitations to our study. First, this is an associa-

tion study and thus it precludes causal inference. Further analysis such

as implementing Mendelian randomization to integrate genomics and

proteomics could help to find proteins causing AD pathology. Second,

the EMIF cohort was designed to be typical of participants who had

high ratios of amyloid pathology and APOE ε4 carriers. Therefore they

are not necessarily representative of the broader community as would

be found in epidemiologically derived samples. Thus thepresent results

should not be generalized to community-based populations without

further investigation. Third, this is a cross-sectional study and longi-

tudinal studies are required to determine the role and mechanisms of

nominated proteins in AD initiation and progression.

Despite this, our study is the largest plasma proteomic study of var-

ious AD pathology markers, particularly the ATN framework, to our

knowledge. By applying both proteome-wide differential analysis and

protein co-expression network analysis, our findings offer new insights

into changes in individual proteins and protein networks linked to AD

pathologymarkers as well as the ATN framework in poorly understood

preclinical stages of AD. Those nominated hub proteins are tractable

targets for further mechanistic studies of AD pathology. Our findings

also suggest that the relationships between plasma proteins and “N”

are dependent on the choice of neurodegeneration marker, indicating

that the ATN variants are not interchangeable. In addition, it confirms

that highly multiplexed assays are able to predict the presence of AD

pathology asmeasured in theATN framework aswell as clinical diagno-

sis. This can be potentially applied as a prescreen to preselect patients

for further selection procedures for clinical trials, thus reducing the

cost incurred to clinical trials by screen failure.
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